Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 650: 123693, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38081555

RESUMO

Optimizing a sustained-release drug delivery system for the treatment of cystic fibrosis (CF) is crucial for decreasing the dosing frequency and improving patients' compliance with the treatment regimen. In the current work, we developed an injectable poly(D,L-lactide-co-glycolide) (PLGA) microparticle formulation loaded with ivacaftor, a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator that increases the open probability of the CFTR anion channel, using a single emulsion solvent evaporation technique. We aimed to study the effect of different parameters on the characteristics of the prepared formulations to select an optimized microparticle formulation to be used in an in vivo pharmacokinetic study in mice. First, a suite of ivacaftor-loaded microparticles were prepared using different formulation parameters in order to study the effect of varying these parameters on microparticle size, morphology, drug loading, encapsulation efficiency, and in vitro release profiles. Prepared microparticles were spherical with diameters ranging from 1.91-6.93 µm, percent drug loading (% DL) of 3.91-10.3%, percent encapsulation efficiencies (% EE) of 26.6-100%, and an overall slow cumulative release profile. We selected the formulation that demonstrated optimal combined % DL and % EE values (8.25 and 90.7%, respectively) for further studies. These microparticles had an average particle size of 6.83 µm and a slow tri-phasic in vitro release profile (up to 6 weeks). In vivo pharmacokinetic studies in mice showed that the subcutaneously injected microparticles resulted in steady plasma levels of ivacaftor over a period of 28 days, and a 6-fold increase in AUC 0 - t (71.6 µg/mL*h) compared to the intravenously injected soluble ivacaftor (12.3 µg/mL*h). Our results suggest that this novel ivacaftor-loaded microparticle formulation could potentially eliminate the need for the frequent daily administration of ivacaftor to people with CF thus improving their compliance and ensuring successful treatment outcomes.


Assuntos
Fibrose Cística , Humanos , Camundongos , Animais , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística , Dioxanos , Tamanho da Partícula
2.
Small ; : e2302931, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525558

RESUMO

Combinations of chemotherapeutic agents comprise a clinically feasible approach to combat cancers that possess resistance to treatment. Type II endometrial cancer is typically associated with poor outcomes and the emergence of chemoresistance. To overcome this challenge, a combination therapy is developed comprising a novel ciprofloxacin derivative-loaded PEGylated polymeric nanoparticles (CIP2b-NPs) and paclitaxel (PTX) against human type-II endometrial cancer (Hec50co with loss of function p53). Cytotoxicity studies reveal strong synergy between CIP2b and PTX against Hec50co, and this is associated with a significant reduction in the IC50 of PTX and increased G2/M arrest. Upon formulation of CIP2b into PEGylated polymeric nanoparticles, tumor accumulation of CIP2b is significantly improved compared to its soluble counterpart; thus, enhancing the overall antitumor activity of CIP2b when co-administered with PTX. In addition, the co-delivery of CIP2b-NPs with paclitaxel results in a significant reduction in tumor progression. Histological examination of vital organs and blood chemistry was normal, confirming the absence of any apparent off-target toxicity. Thus, in a mouse model of human endometrial cancer, the combination of CIP2b-NPs and PTX exhibits superior therapeutic activity in targeting human type-II endometrial cancer.

3.
Biomaterials ; 296: 122093, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965280

RESUMO

Dysfunction of the p53 gene and the presence of the MDR1 gene are associated with many malignant tumors including endometrial cancer and are responsible for cancer therapeutic resistance and poor survival. Thus, there is a critical need to devise novel combinatorial therapies with multiple mechanisms of action to overcome drug resistance. Here, we report a new ciprofloxacin derivative (CIP2b) tested either alone or in combination with taxanes against four human endometrial cancer cell lines. In vitro studies revealed that a combination of paclitaxel + CIP2b had synergistic cytotoxic effects against MDR1-expressing type-II human endometrial cancer cells with loss-of-function p53 (Hec50co LOFp53). Enhanced antitumor effects were confirmed by substantial increases in caspase-3 expression, cell population shifts toward the G2/M phase, and reduction of cdc2 phosphorylation. It was found that CIP2b targets multiple pathways including the inhibition of MDR1, topoisomerase I, and topoisomerase II, as well as enhancing the effects of paclitaxel (PTX) on microtubule assembly. In vivo treatment with the combination of PTX + CIP2b also led to significantly increased accumulation of PTX in tumors (compared to CIP2b alone) and reduction in tumor growth. Enhanced in vivo cytotoxic effects were confirmed by histological and immunohistochemical examination of the tumor tissues. Complete blood count and blood biochemistry data confirmed the absence of any apparent off-target toxicity. Thus, combination therapy involving PTX and CIP2b targeted multiple pathways and represents an approach that could result in improved tolerance and efficacy in patients with type-II endometrial cancer harboring the MDR1 gene and p53 mutations.


Assuntos
Antineoplásicos , Neoplasias do Endométrio , Feminino , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
4.
Adv Drug Deliv Rev ; 189: 114482, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35944587

RESUMO

Over the past two decades, multidisciplinary investigations into the development of nanoparticles for medical applications have continually increased. However, nanoparticles are still subject to biological barriers and biodistribution challenges, which limit their overall clinical potential. This has motivated the implementation of innovational modifications to a range of nanoparticle formulations designed for cancer imaging and/or cancer treatment to overcome specific barriers and shift the accumulation of payloads toward the diseased tissues. In recent years, novel technological and chemical approaches have been employed to modify or functionalize the surface of nanoparticles or manipulate the characteristics of nanoparticles. Combining these approaches with the identification of critical biomarkers provides new strategies for enhancing nanoparticle specificity for both cancer diagnostic and therapeutic applications. This review discusses the most recent advances in the design and engineering of nanoparticles as well as future directions for developing the next generation of nanomedicines.


Assuntos
Nanopartículas , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina/métodos , Nanopartículas/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Distribuição Tecidual
5.
Sci Adv ; 8(29): eabk3150, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35857851

RESUMO

In clinical settings, cancer vaccines as monotherapies have displayed limited success compared to other cancer immunotherapeutic treatments. Nanoscale formulations have the ability to increase the efficacy of cancer vaccines by combatting the immunosuppressive nature of the tumor microenvironment. Here, we have synthesized a previously unexplored cationic polymeric nanoparticle formulation using polyamidoamine dendrimers and poly(d,l-lactic-co-glycolic acid) that demonstrate adjuvant properties in vivo. Tumor-challenged mice vaccinated with an adenovirus-based cancer vaccine [encoding tumor-associated antigen (TAA)] and subsequently treated with this nanoparticulate formulation showed significant increases in TAA-specific T cells in the peripheral blood, reduced tumor burden, protection against tumor rechallenge, and a significant increase in median survival. An investigation into cell-based pathways suggests that administration of the nanoformulation at the site of the developing tumor may have created an inflammatory environment that attracted activated TAA-specific CD8+ T cells to the vicinity of the tumor, thus enhancing the efficacy of the vaccine.

6.
J Enzyme Inhib Med Chem ; 37(1): 1346-1363, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35548854

RESUMO

A series of novel 1,2,3-triazole-linked ciprofloxacin-chalcones 4a-j were synthesised as potential anticancer agents. Hybrids 4a-j exhibited remarkable anti-proliferative activity against colon cancer cells. Compounds 4a-j displayed IC50s ranged from 2.53-8.67 µM, 8.67-62.47 µM, and 4.19-24.37 µM for HCT116, HT29, and Caco-2 cells; respectively, whereas the doxorubicin, showed IC50 values of 1.22, 0.88, and 4.15 µM. Compounds 4a, 4b, 4e, 4i, and 4j were the most potent against HCT116 with IC50 values of 3.57, 4.81, 4.32, 4.87, and 2.53 µM, respectively, compared to doxorubicin (IC50 = 1.22 µM). Also, hybrids 4a, 4b, 4e, 4i, and 4j exhibited remarkable inhibitory activities against topoisomerase I, II, and tubulin polymerisation. They increased the protein expression level of γH2AX, indicating DNA damage, and arrested HCT116 in G2/M phase, possibly through the ATR/CHK1/Cdc25C pathway. Thus, the novel ciprofloxacin hybrids could be exploited as potential leads for further investigation as novel anticancer medicines to fight colorectal carcinoma.


Assuntos
Antineoplásicos , Chalcona , Chalconas , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células , Chalcona/farmacologia , Chalconas/metabolismo , Chalconas/farmacologia , Ciprofloxacina/farmacologia , Dano ao DNA , DNA Topoisomerases Tipo I/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Doxorrubicina/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Polimerização , Relação Estrutura-Atividade , Triazóis/farmacologia , Tubulina (Proteína)/metabolismo
7.
Int J Pharm ; 606: 120876, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34252520

RESUMO

Melanoma, the most malignant form of skin cancer, shows resistance to traditional anticancer drugs including paclitaxel (PTX). Furthermore, over 50% of melanoma cases express the BRAFV600E mutation which activates the MAPK pathway increasing cell proliferation and survival. In the current study, we investigated the capacity of the combination therapy of PTX and the MAPK inhibitor, PD98059, to enhance the cytotoxicity of PTX against melanoma and therefore improve treatment outcomes. Synergistic in vitro cytotoxicity was observed when soluble PTX and PD98059 were used to treat the A375 melanoma cell line as evidenced by a significant reduction in the cell viability and IC50 value for PTX. Then, in further studies, TPGS-emulsified PD98059-loaded PLGA nanoparticles (NPs) were prepared, characterized in vitro and assessed for therapeutic efficacy when used in combination with soluble PTX. The average particle size (180 nm d.), zeta potential (-34.8 mV), polydispersity index (0.081), encapsulation efficiency (20%), particle yield (90.8%), and drug loading (6.633 µg/mg) of the prepared NPs were evaluated. Also, cellular uptake and in vitro cytotoxicity studies were performed with these PD98059-loaded NPs and compared to soluble PD98059. The PD98059-loaded NPs were superior to soluble PD98059 in terms of both cellular uptake and in vitro cytotoxicity in A375 cells. In in vivo studies, using A375 challenged mice, we report improved survival in mice treated with soluble PTX and PD98059-loaded NPs. Our findings suggest the potential for using this combinatorial therapy in the management of patients with metastatic melanoma harboring the BRAF mutation as a means to improve survival outcomes.


Assuntos
Melanoma , Nanopartículas , Animais , Linhagem Celular Tumoral , Flavonoides , Humanos , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno , Paclitaxel , Tamanho da Partícula , Proteínas Proto-Oncogênicas B-raf/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...